5 semester

1

Course topic

Neural networks and genetic algorithms

2

Specialty

1-31 03 09 Computer mathematics and systems analysis

3

Year of study

3

4

Academic semester

5

5

Study credits

2

6

Lecturer

Goloubeva Larissa L., Ph.D., Associate Professor

7

Course purposes

Increase the level of professional competence and the formation of the student together with competencies, knowledge, skills and skills to solve problems of classical and modern natural science.

As a result of the training, the student must

know:

–    principles of the device and operation of neural networks; basic methods of training neural networks; principles of constructing genetic algorithms; basic concepts of the theory of machine learning;

be able to:

–    use modern methods of computer modeling for the study of information systems;

–    design, train and use neural networks to solve practical problems;

–    use genetic algorithms to solve practical problems;

–    make assessments and compare the quality of training and the functioning of various models built on the basis of artificial neural networks and genetic algorithms;

–    independently expand computer mathematical knowledge with their further use in the construction and analysis of mathematical and computer models of a wide range of theoretical and applied problems.

8

Prerequisite(s)

Courses of disciplines “Algebra and Number Theory”, “Geometry”, “Programming Methods and Informatics”, “Differential Equations”, “Computer Mathematics”, “Neural networks and genetic algorithms”  for the 4th semester.

9

Course overview

Artificial neural networks, basic concepts and definitions. Neural Network Toolbox MATLAB. The tools of MATLAB modeling the INS. Neural network of a general user (network). Introduction to Machine Learning. Perceptron and classification problems. Approximation of functions. Pattern recognition. Cluster analysis.

10

Recommended literature

1.      Хайкин, С. Нейронные сети: Полный курс, 2-е издание. М., «Вильямс», 2006. 1104 с.

2.      Haykin, S. Neural Networks and Learning Machines Third Edition. Copyright © 2009 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458, 2009. 938 p.

3.      Вороновский, Г.К. Генетические алгоритмы, Искусственные нейронные сети и Проблемы виртуальной реальности / Г.К. Вороновский, К.В. Махотило, С.Н. Петрашев, С.А. Cepгeeв. Харьков: «Основа», 1997. 107 с.

4.      Померанцев, А. Метод Главных Компонент (PCA) – http://www.chemometrics.ru/materials/textbooks/pca.htm, 2009

5.      Голубева, Л. Л. Компьютерная математика. Числовой пакет MATLAB: курс лекций / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2007. 164 с.

6.      Голубева, Л. Л. Компьютерная математика. Числовой пакет MATLAB: лабораторный практикум / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2008. 171 с.

7.      Голубева, Л. Л. Компьютерная математика. Пакет имитационного моделирования Simulink: лабораторный практикум / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2010. 151 с.: ил.

8.      Beale, M.D. Neural Network Toolbox™. Getting Started Guide / M.D. Beale, M.T. Hagan, H.D. Demuth. © COPYRIGHT 1992–2017 by The MathWorks, Inc., 2017. 134 p.

9.      Beale, M.D. Neural Network Toolbox™. User’s Guide / M.D. Beale, M.T. Hagan, H.D. Demuth. © COPYRIGHT 1992–2017 by The MathWorks, Inc., 2017. 512 p.

10.  Воронцов К.В. Машинное обучение. Курс лекций. http://www.MachineLearning.ru/wiki

11.  Воронцов К.В. Машинное обучение. Видеолекции. http://shad.yandex.ru/lectures, https://www.youtube.com

11

Teaching methods

Mixed with elements of distance learning, electronic materials. Explanatory-illustrative, reproductive, partially-search.

12

Language

Russian

13

Forms of knowledge monitoring

Laboratory works, homework assignments, oral surveys, short class tests, test papers.

14

The knowledge check

Credit