1. |
Course title |
Computer algebra. Gröbner basis |
2. |
Year of study, study programme |
3, 1-31 03 09 Computer Mathematics and Systems Analysis |
3. |
Semester of study |
6 |
4. |
Number of credits |
2 |
5. |
Lecturer |
Sadovskii Anton Pavlovich |
6. |
Course Objective |
Formation of skills in solving practical problems related to polynomial systems. |
7. |
Prerequisites |
Algebra and Number Theory. Computer Mathematics. |
8. |
Course content |
Affine variety and polynomial ideal. A Division Algorithm in a ring of polynomial with several variables. The Hilbert basis theorem. Gröbner basis. The Elimination and Extension Theorems. Resultants. |
9. |
Recommended Literature |
1. Садовский, А. П. Полиномиальные идеалы и многообразия / А. П. Садовский. – Минск: БГУ, 2008. – 200 с. 2. Кокс, Дэвид. Идеалы, многообразия и алгоритмы = Ideals, Varieties, and Algorithms: Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры / Д. Кокс, Дж. Литтл, Д. О’Ши; Пер.с англ. Ю.Ю. Кочеткова под ред. В.Л. Попова. – Москва: Мир, 2000. – 687с. |
10. |
Teaching Methods |
Lectures, laboratory classes |
11. |
Teaching language |
Russian |
12. |
Requirements, current control |
Presentation and discussion of laboratory results. |
13. |
Method of certification |
Credit |