1. |
Course title |
Computer algebra. Finite element method |
2. |
Year of study, study programme |
4, 1-31 03 09 Computer Mathematics and Systems Analysis |
3. |
Semester of study |
7 |
4. |
Number of credits |
2 |
5. |
Lecturer |
Lavrova Olga Anatolievna |
6. |
Course Objective |
Formation of theoretical knowledge and practical skills for solving problems of mathematical physics by means of finite element method. As a result of studying the student should be able to – construct variational and discrete formulations for elliptic boundary value problems of the second order; – analyze existence and uniqueness of solutions for variational problems in Sobolev spaces; – solve the problems of mathematical physics by the finite element method. |
7. |
Prerequisites |
Algebra and Number Theory. Computer Mathematics. Equations of Mathematical Physics. Numerical Methods |
8. |
Course content |
1. Types of partial differential equations of the second order. Variational formulation of the boundary-value problem. Sobolev spaces. Existence and uniqueness of weak solutions. 2. Galerkin method. Finite element. Finite element spaces. Element-wise construction of the discrete problem. 3. Convergence of the finite element method. Approximation theorems. A-priori error estimates. A-posteriori error estimates. 4. The finite element method in system of computer mathematics (MATLAВ, Mathematica) and programming languages (FEniCS-project). |
9. |
Recommended Literature |
1. Ciarlet P. The finite element method for elliptic problems. North-Holland Publishing Company, 1978. 2. Оганесян Л.А., Руховец Л.А. Вариационно-разностные методы решения эллиптических уравнений. Ереван: Изд-во АН АрмССР, 1979. 3. Шайдуров В.В. Многосеточные методы конечных элементов. М.: Наука, 1989. 4. H. Goering, H-S. Roos, L. Tobiska, Finite-Elementе-Methode für Anfänger, 4. Auflage, Wiley-VCH, Berlin, 2010. 5. Голубева, Л. Л. Компьютерная математика. Числовой пакет MATLAB: курс лекций / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2007. 164 с. 6. Голубева, Л. Л. Компьютерная математика. Числовой пакет MATLAB: лабораторный практикум / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2008. 171 с. 7. Голубева, Л. Л. Компьютерная математика. Символьный пакет Mathematica: лаб. практикум. В 2 ч. Ч 1. / Л. Л. Голубева, А. Э. Малевич, Н. Л. Щеглова. Минск: БГУ, 2012. 235 с. http://elib.bsu.by/handle/123456789/95686 8. Langtangen, H.P., Logg, A. Solving PDEs in Python – The FEniCS Tutorial Volume I. Berlin, Springer, 2016. |
10. |
Teaching Methods |
Lectures, laboratory classes |
11. |
Teaching language |
Russian |
12. |
Requirements, current control |
Control of the student’s work takes place in the form of tests and interviews (reports) on laboratory works with their oral defense. Credits are held either orally or in writing. |
13. |
Method of certification |
Credit |