2 semester

1

Course Title

Analytic geometry

2

Year of study, speciality

1,  Speciality – “Mathematics”, focus area: “scientific and construction activity” 

3

Semester of study

2

4

Credit points

2

5

Name of the lecturer, scientific degree, occupation

Senior Lecturer Tamara V. Tikhonova,Department of Geometry, Topology and Methods of Teaching Mathematics 

6

Goals of studying Development of skills of working in multidimensional Euclidean and affine spases; The study of figures of the first and second orders in these spaces. Mastering the basic method of research in analytical geometry – the method of coordinates.Acquisition of sufficient knowledge, skills and abilities in the field of analytical geometry for students to use in studying other mathematical disciplines.

7

Prerequisites

 

Mathematical analysis, Algebra and number theory, Introduction to mathematics

8

Contents Affine spaces An. Affine mappings and transformations. Figures of the second order (quadrics) in a real affine space An.

9

Recommended literature 
  1. Kononov S..G. Analytic geometry: – Minsk: BSU, 2014. – 238 p (in Russian).
  2. Milovanov M.V., Tyshkevich R.I., Fedenko A.S. Algebra and Analytic Geometry: in 2 volumes: – Minsk: Vysheishaya shkola,1984. – Volume 2. – 302 p. (in Russian).
  3. Modenov P.S., Parkhomenko A.S. Collection of problems in analytic geometry.– M., Nauka,, 1976.– 384 p. (in Russian).
  4. Burdun A.A., Murashko E.A., Tolkachov M.M., Fedenko A.S. A Collection of problems in algebra and analytic geometry. – Minsk: Universitetskoe, 1989. – 285 p. (in Russian).

10

Teaching methodology A comparative, problematic, heuristic, visual

11

Language of instruction  russian

12

Requirements for study during the semester
  • Individual tasks;
  • test papers.

The final evaluation is made taking into account:

  • 40% – assessment of current academic performance,
  • 60% – oral answer in the exam

13

Examination methodology

Credit test, Examination