1 semester

1

Course name

Actual problems of modern mechanics

2

Year of study, speciality

Master degree education, first year,

specialty “Mechanics and mathematical modeling”

3

Study semester

1

4

Credits

3/4

5

Lecturer

DrSc, professor M. Zhuravkov;

DrSc, professor G. Mikhasev;

PhD, assistant professor P. Konon.

6

Goals of studing

Increase of the general professional level of students preparation, obtaining of the basic volume of knowledge in the field of modern mechanics and mathematical modeling, modern methods and approaches to research and study of various mechanical and conjugate processes and phenomena, mechanical objects and systems on various scale level.

As a result of the study the master student should be able to:

  • to choose and build correct and adequate modern models and to implement the initial-boundary problems for the mechanics of continuous and discrete media;
  • to carry out a mathematical and numerical solution of model problems of mechanics of continuous media;
  • to improve classical models of continuum mechanics taking into account the specificity of the object of research;
  • analyze and summarize the results of the solution and modeling, issue recommendations and conclusions.

7

Need to know

Continua Mechanics, mathematical methods of mechanics of deformable rigid body; strength and destruction of deformable rigid bodies; numerical methods of mechanics

8

Course subjects

  • Modern actual scientific and applied research areas in the mechanics and mathematical modeling; Modern classification of mechanics sections;
  • Modern classification of materials mechanical behavior types;
  • Modern classification of materials mechanical characteristics, their essence and content;
  • Modern concepts and description of the stress-strain state of deformable media;
  • Modern approaches, methods to the study of mechanical objects, processes and phenomena within the Continua Mechanics;
  • Conjugate mechanical processes and phenomena, the construction of mechanical-mathematical models for the study of conjugate processes and phenomena;
  • Large-scale effect, features of statement of problems in the study of mechanical processes within the Continua Mechanics at different scale levels;
  • Modern theories of strength, fracture and destruction;
  • Special sections of theoretical and applied mechanics (within the framework of Continua Mechanics models);
  • Modern approaches and methods of numerical analysis and computer modeling in mechanics.

9

Recommended literature

  1. Журавков М.А., Старовойтов Э.И. Механика сплошных сред. Теория упругости и пластичности: учеб.пособие. – Минск: БГУ, 2011. 543 с.
  2. Журавков М.А., Романова Н.С. Оценка физико-механических свойств биоматериалов. Механико-математическое моделирование и технологии наноиндентирования. LAP LAMBERT Academic Publishing RU. Germany, Saarbrigge. 2017. 196 c.
  3. Старовойтов Э.И., Журавков М.А., Леоненко Д.В. Трехслойные стержни в терморадиационных полях. – Минск: Беларуская навука, 2017. 275 с.
  4. Сосновский Л.А., Журавков М.А., Щербаков С.С. Фундаментальные и прикладные задачи трибофатики: курс лекций. – Минск: БГУ, 2011. 488 с.
  5. Журавков, М.А. Математическое моделирование деформационных процессов в твердых деформируемых средах. – Мн., БГУ, 2002. – 456 с.
  6. Fung,Y.C. Biomechanics: Mechanical properties of living tissues / Y.C. Fung. – Springer-Verlag, New York, 1981. – 433 p.
  7. Oyen, M.L. Handbook of nanoindentation with biological applications/ M.L. Oyen // Pan Stanford, Singapore, 2011. – 311p.
  8. Haugstad, G. Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications / G. Haugstad. – Wiley; 2012 – 520 p.
  9. Морозов Н.Ф. Лекции по избранным вопросам механики сплошных сред. Л.: Изд-во ЛГ, 1975.
  10. Атанацкович Т., Гуран А., Лекции по теории упругости, СПбГУ, 2003.
  11. Ding, H. Elasticity of transversely isotropic materials / H. Ding, W. Chen, L. Zhang. – Springer, 2006. – 444p.
  12. Горшков А.Г. Волны в сплошных средах/ А.Г. Горшков [и др.] –  Москва: Физматлит, 2004.
  13. Васидзу Кюитри. Вариационные методы в теории упругости и пластичности. М.: Мир, 1987, 542 с.
  14. Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. – М.: Физматлит, 2001. 704 с.
  15. Черный Г.Г. Газовая динамика. М.:Наука, 1989.
  16. Лойцянский Л.Г. Механика жидкости и газа. М.:Наука, 1986.
  17. Шкадов В.Я. Течения вязкой жидкости. М.:Изд. МГУ,1984.
  18. Carpinteri, A. A fractional calculus approach to the description of stress and strain localization in fractal media / A.Carpinteri, P.Cornetti // Chaos, Solutions and Fractals. – 2003. – Vol. 13. – P.85–94
  19. Magin, R.L. Fractional Calculus in Bioengineering / R.L. Magin // CT: Begell House, Reding, 2006
  20. Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity / R.C. Koeller // Journal of Applied Mechanics. – 1984. – Vol.51, №2. – P.299–307.
  21. Wriggers, P. Computational contact mechanics / P.Wriggers. – Berlin.Springer, 2002. 464 p.
  22. Сандерс, Дж. Технология CUDA в примерах / Дж. Сандерс, Э. Кэндрот. М.: ДМК Пресс, 2013.
  23. Chapman, B. Using OpenMP / B.Chapman, G.Jost, R.V. der Pas. London: Cambridge, 2008.
  24. Beer, G. The boundary element method with programming / G. Beer [et al.]. – Berlin: Springer, 2008.

10

Education methodic

A comparative, problematic, dialog-heuristic, visual, method of forming the personal significance of knowledge

11

Aducation language

Russian

12

Forms of knowledge control

  • Individual tasks; preparation of abstracts, projects; start-up design
  • Evaluation in the exam is set taking into account:
    • 60% – laboratory work, seminars, individual work
    • 40% – oral answer in the exam

13

Certification form

Exam