1 semester

1.      

Course title

Contemporary problems in Mathematics and Computer Science

2.      

Course of Study, Speciality

1, 1-31 81 06 Web Development and Internet Technologies (2 year)

3.      

Semester

1

4.      

Credits

2

5.      

Lecturer

Boris Doubrov

6.      

Course goal

The goal of the course is to study wide-used mathematical models in modern Information Technologies. This includes mathematical models in the Theory of Compilers and Formal Languages based on the notions of the Idempotent Analysis; algebraic and geometric basics of Elliptic Cryptography and Blockchain technology; modern technologies in image recognition and artificial intelligence.

7.      

Prerequisites

Java, or C++, or Python (student’s choice)

8.      

Course Topics

  1. Role of fundamental mathematical research in the advance of computer technologies
  2. Theory of formal languages and the idempotent analysis
  3. Mathematical models of Elliptic Cryptography and Blockchain technology.
  4. Neural networks and methods of Machine Learning.

9.      

Recommended Literature

  1. А. Ахо, Дж. Ульман, Р. Сети. Компиляторы: принципы, технологии и инструменты. – СПб: Вильямс, 2001.
  2. Ю.С. Харин, В.И. Берник, Г.В. Матвеев. Математические и компьютерные основы криптологии. Минск: Новое знание, 2003.
  3. Хайкин С.  Нейронные сети: полный курс. 2-е изд. — М.: Вильямс, 2006.
  4. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Satoshi Nakamoto Institute. October 31, 2008.

10.   

Teaching Methods

Lections, practical exercises

11.   

Teaching language

Russian

12.   

Requirements, current control

  • theoretical tests;
  • practical assignments

13.   

Method of certification

Credit