ПРОГРАММА ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

(1 курс, 2 семестр)

Жирным шрифтом ниже выделены (за исключением названий разделов) важнейшие понятия этого семестра

Определения и формулировки из программы 1-го се-0 местра

Операции над множествами.

Функция и связанные с ней понятия (образ, прообраз, график, сюръекция, инъекция, биекция).

Точные верхняя и нижняя границы множества.

Определение предела последовательности.

Теорема о сходимости монотонных последовательностей.

Число Эйлера.

Верхний и нижний пределы ограниченной последовательности.

Определение предела функции.

Критерий Коши для предела функции.

Существование односторонних пределов у монотонной функции.

Непрерывность функции в точке.

Локальные свойства непрерывных функций (локальная ограниченность, локальное сохранение знака).

Теоремы Вейерштрасса об ограниченности непрерывной функции и о достижении точных границ.

Теоремы Больцано-Коши о промежуточных значениях.

Равномерная непрерывность, теорема Кантора.

Критерий глобальной непрерывности монотонной функции.

Критерий взаимной однозначности непрерывной функции.

Определение производной. Таблица производных.

Правила Лопиталя для неопределенностей вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$.

Полином Тейлора. Формы остатка формулы Тейлора (Пеано, Лагранжа).

Монотонность и знак производной.

Первое и второе достаточные условия экстремума.

Выпуклые функции. Условия выпуклости в терминах первой и второй производной.

Интегральное исчисление 1

1.1 Первообразная и неопределенный интеграл

Первообразная функции. Описание класса всех первообразных. Неопределенный интеграл и его свойства. Таблица неопределенных интегралов элементарных функций. Обобщенная первообразная и неопределенный интеграл. Основные методы интегрирования (интегрирование по частям и замена переменной).

1.2 Определение интеграла Римана

Примеры естественнонаучных задач, приводящих к понятию интеграла Римана. Определение интеграла Римана: разбиение отрезка, ранг разбиения, разбиения с отмеченными точками и интегральные суммы, предел интегральных сумм. Класс интегрируемых функций R[a,b]. Необходимое условие интегрируемости.

1.3 Критерий интегрируемости

Суммы Дарбу и их свойства. Верхний и нижний интегралы Дарбу и основные неравенства для них. Критерии интегрируемости в терминах сумм Дарбу и в терминах интегралов Дарбу.

1.4 Классы интегрируемых функций

Классы интегрируемых функций (непрерывные, ограниченные с конечным числом точек разрыва, монотонные).

1.5 Свойства определенного интеграла

Интеграл по ориентированному промежутку. Свойства определенного интеграла: интегрируемость линейных комбинаций, линейность, аддитивность по области, монотонность. Неравенства для определенного интеграла. Непрерывность интеграла с переменным верхним пределом.

1.6 Теоремы о среднем значении

Теоремы о среднем значении — первая теорема о среднем, формулы Бонне.

1.7 Формула Ньютона-Лейбница

Дифференцируемость интеграла с переменным верхним пределом. Существование первообразной у непрерывной функции и обобщенной первообразной у кусочно непрерывной функции. Формула Ньютона-Лейбница.

1.8 Основные методы вычисления

Основные методы вычисления определенных интегралов — **интегрирование по частям и замена переменной в определенном интеграле**. Формула Тейлора с остатком в виде интеграла.

1.9 Приложения определенного интеграла

Приложения определенного интеграла. Длина пространственной кривой, площадь криволинейной трапеции, площадь поверхности вращения, объем тела вращения.

1.10 Несобственные интегралы

Несобственные интегралы. Особенности функции, определение интеграла от функции с особенностью. Свойства несобственного интеграла: совпадение с интегралом Римана для интегрируемых функций, линейность, аддитивность и монотонность. Интегрирование по частям и замена переменной в несобственном интеграле. Случай нескольких особенностей. Главное значение по Коши.

1.11 Условия сходимости несобственных интегралов

Критерий Коши сходимости несобственного интеграла. Абсолютная и условная сходимость. Признак сравнения для интегралов от положительных функций. Признак Абеля–Дирихле для условной сходимости.

2 Функции на метрических пространствах

2.1 Метрические пространства

Расстояние, метрическое пространство, подпространство. Шары, открытые множества и их свойства. Внутренняя точка множества и его внутренность.

2.2 Замкнутые множества

Предельная и изолированная точка множества. Эквивалентные описания предельных точек в метрическом пространстве. Замкнутые множества. Теорема двойственности открытых и замкнутых множеств. Замыкание множества. Граница множества, критерий открытости и замкнутости в терминах границы (без доказательства).

2.3 Компактные множества

Ограниченные множества, диаметр. Открытое покрытие множества. **Компактные множества** и их свойства. Замкнутые подмножества компакта. **Связные множества**. Путь в метрическом пространстве, линейно связные множества. Выпуклое множество в векторном пространстве.

2.4 Полные метрические пространства

Сходящиеся последовательности. Фундаментальные последовательности, полнота. Замкнутые шары, теорема Кантора о вложенных замкнутых шарах.

3 Непрерывные функции на метрических пространствах

3.1 Непрерывность

Предел функции в метрическом пространстве. Непрерывность функции на метрическом пространстве. Относительно открытые множества. Глобальный критерий непрерывности.

3.2 Непрерывные образы компактов и связных множеств

Теорема о непрерывном образе компакта, теорема о непрерывном образе связного множества.

3.3 Равномерная непрерывность

Равномерно непрерывные функции на метрическом пространстве. Теорема Кантора о равномерной непрерывности.

3.4 Нормированное пространство \mathbb{R}^d

Норма, линейное нормированное пространство, полнота. **Метрика в линейном нормированном пространстве**. d-мерное евклидово пространство \mathbb{R}^d . Скалярное произведение \mathbb{R}^d и его свойства, неравенство Коши, норма в \mathbb{R}^d . **Координатная сходимость** в \mathbb{R}^d и ее связь с топологической сходимостью, полнота \mathbb{R}^d . Важные подмножества в \mathbb{R}^d (сегмент, интервал). Критерий компактности в \mathbb{R}^d (теорема Бореля–Лебега).

4 Дифференцируемые функции из \mathbb{R}^d в \mathbb{R}

4.1 Дифференцируемость

Линейные формы на \mathbb{R}^d , общий вид линейной формы, гиперплоскость. Дифференцируемые функции, производная как линейная форма на \mathbb{R}^d . Свойства производной. Геометрическая интерпретация дифференцируемости, касательная гиперплоскость. Формула Лагранжа.

4.2 Частные производные

Частные производные функции и их связь с производной. Достаточное условие дифференцируемости. Класс $C^1(E)$ и его свойства. **Производная по направлению, градиент**, его геометрический смысл.

4.3 Теорема Шварца

Частные производные высших порядков. Теорема Шварца о независимости непрерывной смешанной производной от последовательности дифференцирований. Классы $C^k(E)$.

4.4 Формула Тейлора

Векторные обозначения, связанные с мультииндексами. Полином Тейлора, различные формы записи, формула Тейлора с остатками Пеано, Лагранжа. Интегральная форма остатка.

4.5 Экстремумы

Квадратичные формы и их матрицы. Знакопостоянные квадратичные формы, критерий Сильвестра (без доказательства). **Локальные экстремумы функции**. Необходимые условия экстремума, стационарные точки функции. Достаточное условие экстремума.

$\mathbf{5}$ Дифференцируемые функции из \mathbb{R}^{d_0} в \mathbb{R}^{d_1}

5.1 Линейное отображение и его норма

Векторные функции, компоненты векторной функции. Класс $L(\mathbb{R}^{d_0}, \mathbb{R}^{d_1})$ линейных отображений \mathbb{R}^{d_0} в \mathbb{R}^{d_1} . Общий вид элементов $L(\mathbb{R}^{d_0}, \mathbb{R}^{d_1})$. **Норма в** $L(\mathbb{R}^{d_0}, \mathbb{R}^{d_1})$. Норма композиции линейных отображений.

5.2 Дифференцируемость

Дифференцируемые векторные функции, производная как элемент $L(\mathbb{R}^{d_0}, \mathbb{R}^{d_1})$. Свойства производной и связь с производными компонент. **Матрица Якоби** и ее представление через частные производные. Класс $C^k(\mathbb{R}^{d_0}, \mathbb{R}^{d_1})$. Производная композиции.

5.3 Теорема об обратной функции

Гомеоморфизм. Теорема Брауэра о гомеоморфизмах между открытыми множествами разных размерностей (без доказательства). Теорема об обратной функции. Сравнение с одномерным случаем.

5.4 Теорема о неявной функции

Теорема о неявной функции. Формулы для определения производных неявной функции.