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Day 2

Problem 1.
Let ¢ be a line and P a point in R3. Let S be the set of points X such that the distance from X to ¢ is greater
than or equal to two times the distance between X and P. If the distance from P to £ is d > 0, find the volume of

S.

Solution. We can choose a coordinate system of the space such that the line £ is the z-axis and the point P
is (d,0,0). The distance from the point (z,y,z) to £ is \/x? + y?, while the distance from P to X is |[PX| =
\/ (x —d)? 4+ y2 + 22. Square everything to get rid of the square roots. The condition can be reformulated as
follows: the square of the distance from £ to X is at least 4|PX|?.

22> A(x—d)? +y? + 22)
0 > 322 — 8dx + 4d> + 3y? + 42°

16 4 \?
<§—4> d223<x—§d> + 3y? + 427

A translation by %d in the z-direction does not change the volume, so we get

4
§d2 > 322 + 3y? + 422

= (5 () (%)

where x1 = x— %d. This equation defines a solid ellipsoid in canonical form. To compute its volume, perform a linear

. s 2d d : 2d\2 d _ 4d®
transformation: we divide z1 and y by 5 and z by Net This changes the volume by the factor (3) 3% =03 angd
turns the ellipsoid into the unit ball of volume %77. So before the transformation the volume was % . %77 = 12(;7:% )

Problem 2.
Suppose f: R — R is a two times differentiable function satisfying f(0) = 1, f/(0) = 0, and for all z € [0, 00),
f(@) = 5f'(x) + 6f(x) > 0.
Prove that for all z € [0, c0),
f(z) > 3e*® — 23,
Solution. We have f”(x) —2f'(x) — 3(f'(z) — 2f(x)) > 0, z € [0, c0).
Let g(z) = f'(z) — 2f(x), z € [0,00). It follows that
g,(l') - 39('%.) > 07 T € [07 OO),
hence
(g(x)e™") >0, w € [0,00),

therefore
g(z)e > > g(0) = —2, z € [0,00) or equivalently

f'(x) —2f(z) > =23, x € [0,00).

Analogously we get
(f(z)e ") > —2¢*, x € [0,00) or equivalently

(f(z)e 2 +2e7) >0, z € [0,00).

It follows that
f(z)e™® +2¢° > f(0)+2=3, z €[0,00) or equivalently

f(z) > 3e*® — 23 2 € [0,00).



Problem 3.
Let A, B € M,,(C) be two n x n matrices such that

A’B + BA? = 2ABA.

Prove that there exists a positive integer k such that (AB — BA)¥ = 0.

Solution 1. Let us fix the matrix A € M,,(C). For every matrix X € M,(C), let AX := AX — XA. We need to
prove that the matrix AB is nilpotent.
Observe that the condition A2B + BA? = 2ABA is equivalent to

A’B = A(AB) = 0. (1)
A is linear; moreover, it is a derivation, i.e. it satisfies the Leibniz rule:
A(XY)=(AX)Y + X(AY), VX,Y € M,(C).
Using induction, one can easily generalize the above formula to k factors:
AXy-Xp) = (AX)Xg - X+ -+ Xp - X1 (AX) X1 Xp + X1 - X1 AXG, (2)
for any matrices X1, Xo, ..., X} € M,(C). Using the identities (1) and (2) we obtain the equation for A*(B¥):
A*(BF) = E(AB)k, vk eN. (3)

By the last equation it is enough to show that A™(B™) = 0.
To prove this, first we observe that equation (3) together with the fact that A2B = 0 implies that A¥T1 Bk =0,

for every k € N. Hence, we have '
AFB) =0, Vk,jEN, j<k. (4)

By the Cayley—Hamilton Theorem, there are scalars «aq, a1, ..., a,_1 € C such that
B"=aol + a1 B+ -+ a,_1B" !,

which together with (4) implies that A"B™ = 0.
Solution 2. Set X = AB — BA. The matrix X commutes with A because

AX — XA = (A’B— ABA) — (ABA — BA?) = A’2B+ BA? —2ABA = 0.
Hence for any m > 0 we have
Xl — X™(AB — BA) = AX™B — X™BA.

Take the trace of both sides:
tr X" = tr A(X™B) — tr(X™B)A =0

(since for any matrices U and V, we have trUV = tr VU). As tr X! is the sum of the m + 1-st powers of
the eigenvalues of X, the values of tr X, ..., tr X™ determine the eigenvalues of X uniquely, therefore all of these
eigenvalues have to be 0. This implies that X is nilpotent.

Problem 4.
Let p be a prime number and F,, be the field of residues modulo p. Let W be the smallest set of polynomials with
coefficients in ), such that

e the polynomials  + 1 and 2P~2 4+ 2P~3 + ... + 22 + 22 + 1 are in W, and

e for any polynomials hy(z) and ha(x) in W the polynomial r(z), which is the remainder of hj(h2(x)) modulo

xP — x, is also in W.

How many polynomials are there in W7



Solution. Note that both of our polynomials are bijective functions on Fy: fi(z) = z + 1 is the cycle 0 — 1 —
2— - —(p—1)—0and fo(z) = 2P 24+ 2P 3 +... 422+ 2x+ 1 is the transposition 0 <> 1 (this follows from the

formula fo(z) = xpx:f L + 2 and Fermat’s little theorem). So any composition formed from them is also a bijection,

and reduction modulo 2 — x does not change the evaluation in IF,. Also note that the transposition and the cycle

generate the symmetric group ( f{“ o fyo f¥ ~* is the transposition k < (k + 1), and transpositions of consecutive
elements clearly generate S)), so we get all p! permutations of the elements of ).

The set W only contains polynomials of degree at most p — 1. This means that two distinct elements of W
cannot represent the same permutation. So W must contain those polynomials of degree at most p — 1 which
permute the elements of F),. By minimality, W has exactly these p! elements.

Problem 5.
Let M be the vector space of m x p real matrices. For a vector subspace S C M, denote by §(S) the dimension of
the vector space generated by all columns of all matrices in S.

Say that a vector subspace T' C M is a covering matriz space if

U ker A = RP.
AET, A#0

Such a T is minimal if it does not contain a proper vector subspace S C T which is also a covering matrix space.
(a) (8 points) Let 7" be a minimal covering matrix space and let n = dim7". Prove that

8(T) < (’;)

(b) (2 points) Prove that for every positive integer n we can find m and p, and a minimal covering matrix space

T as above such that dim7T =n and 6(T") = <Z

Solution 1. (a) We will prove the claim by constructing a suitable decomposition 7' = Zy @ Z; @ --- and a
corresponding decomposition of the space spanned by all columns of T"as W@ W1 & - - -, such that dim Wy < n—1,
dim Wy < n — 2, etc., from which the bound follows.

We first claim that, in every covering matrix space S, we can find an A € S with rk A < dim S — 1. Indeed, let
Sp C S be some minimal covering matrix space. Let s = dim Sy and fix some subspace S’ C Sy of dimension s — 1.
S’ is not covering by minimality of Sy, so that we can find an v € RP with u ¢ Ugcg/ proKer B. Let V = 5'(u);
by the rank-nullity theorem, dimV = s — 1. On the other hand, as Sy is covering, we have that Au = 0 for some
A€ Sp\ S We claim that Im A C V' (and therefore rk(A4) < s —1).

For suppose that Av € V for some v € RP. For every o € R, consider the map f, : Sop — R" defined by
fa: (T4 BA) — 7(u+ av) + BAv, 7 € S', f € R. Note that fy is of rank s = dim Sy by our assumption, so that
some s X § minor of the matrix of fj is non-zero. The corresponding minor of f, is thus a nonzero polynomial of
a, so that it follows that rk f, = s for all but finitely many «. For such an « # 0, we have that Ker f, = {0} and
thus

0# 7(u+ aw) 4+ BAv = (7 + a1 BA) (u + av)

for all 7 € S’, 5 € R not both zero, so that B(u + av) # 0 for all nonzero B € Sy, a contradiction.

Let now T be a minimal covering matrix space, and write dim7T" = n. We have shown that we can find an
A € T such that Wy = Im A satisfies wg = dim Wy < n — 1. Denote Zy = {B € T : Im B C Wy}; we know that
to=dimZy > 1. U T = Zp, then 6(T) < n— 1 and we are done. Else, write T' = Zy ® T}, also write R™ = Wy @ V;
and let m; : R™ — R"™ be the projection onto the Vi-component. We claim that

Tlti = {7‘(‘17’1 I T € Tl}

is also a covering matrix space. Note here that 71'? : T — Tf, 71 +— (m171) is an isomorphism. In particular we note
that &6(T) = wo + 6(T7).

Suppose that Tf is not a covering matrix space, so we can find a v; € RP with v; € U er, rz0Ker(m7). On
the other hand, by minimality of 7" we can find a u; € RP with u; € Uy ez,, r-0Ker 7. The maps g, : Zg — V,



70 — To(u1 + avr) and hg : T1 — Vi, 71 — mi(71(v1 + Buy)) have rk gy = tp and rkhg = n — ¢y and thus both
rk go = tg and rkh,-1 = n — tg for all but finitely many o # 0 by the same argument as above. Pick such an «
and suppose that

(0 +71)(u1 + avy) =0

for some 1y € Zy, 71 € T1. Applying 71 to both sides we see that we can only have 71 = 0, and then 75 = 0 as well,
a contradiction given that T is a covering matrix space.

In fact, the exact same proof shows that, in general, if T is a minimal covering matrix space, R™ = V[, ® V1,
To ={r €T : Im7 C W}, T ="Ty®Th, m : R™ — R™ is the projection onto the Vj-component, and
Tlti ={mm : 1 € T}, then Tf is a covering matrix space.

We can now repeat the process. We choose a m A1 € Tf such that Wy = (m141)(RP) has w; = dimW; <
n—ty—1<n—2 Wewrite Z1 ={m € T1 : Im(mm) C Wi}, T1 =Z1® T, (and so T = (Zy ® Z1) ® T3),
tp =dimZ; > 1, Vi = W1 &V, (and so R™ = (Wy @ Wy) @ Vi), me : R™ — R™ is the projection onto the
Va-component, and Tg = {mamy : T € T3}, so that Tg is also a covering matrix space, etc.

We conclude that
5(T) = wWo +5(T1) = wo + wq +5(T2) — ...

<-1)+m-2)+ < (Z)

(b) We consider (g) X n matrices whose rows are indexed by (g) pairs (i, 7) of integers 1 < i < j < n. For every
u = (u1,uz,...,up) € R", consider the matrix A(u) whose entries A(u)(; ;) With 1 <i<j<nand1<k<n
are given by
Ug, k= j’
(Aw) Gk = —uj, k=1,

0, otherwise.

It is immediate that Ker A(u) = R - u for every u # 0, so that S = {A(u) : u € R"} is a covering matrix space,
and in fact a minimal one.

On the other hand, for any 1 < i < j < n, we have that A(e;)( ) ; is the (i,7)™ vector in the standard basis
of ]R(g), where e; denotes the i*" vector in the standard basis of R™. This means that §(S) = (g), as required.

Solution 2. (for part a)

Let us denote X = RP, Y = R™. For each z € X, denote by p; : T — Y the evaluation map 7 — 7(z). As T
is a covering matrix space, ker p, > 0 for every z € X. Let U = {x € X : dimker p, = 1}.

Let T7 be the span of the family of subspaces {ker u, : x € U}. We claim that T} = T. For suppose the
contrary, and let 77 C T be a subspace of T of dimension n — 1 such that 73 C T”. This implies that T” is a
covering matrix space. Indeed, for = € U, (ker ;) N T" = ker p,, # 0, while for x ¢ U we have dim p, > 2, so that
(ker pi;) VT # 0 by computing dimensions. However, this is a contradiction as T' is minimal.

Now we may choose z1,22,...,2, € U and 11,72,...,7, € T in such a way that ker y,, = R7; and 7; form a
basis of T'. Let us complete x1,...,z, to a sequence 1, ...,z which spans X. Put y;; = 7;(x;). It is clear that
v;; span the vector space generated by the columns of all matrices in 7. We claim that the subset {y;; : ¢ > j} is
enough to span this space, which clearly implies that §(7") < (g)

We have y; = 0. So it is enough to show that every y;; with ¢ < j can be expressed as a linear combination of
Yii, K =1,...,n. This follows from the following lemma:

Lemma. For every xg € U, 0 # 19 € ker py, and x € X, there exists a 7 € T such that m9(x) = 7(x¢).

Proof. The operator pi, has rank n — 1, which implies that for small € the operator pi,+c» also has rank n — 1.
Therefore one can produce a rational function 7(¢) with values in 7" such that mg,4e.(7(¢)) = 0. Taking the
derivative at € = 0 gives iz, (70) + 12 (7'(0)) = 0. Therefore 7 = —7/(0) satisfies the desired property.

Remark. Lemma in solution 2 is the same as the claim Im A C V at the beginning of solution 1, but the proof given here

is different. It can be shown that all minimal covering spaces T" with dim7T = (g) are essentially the ones described in our
example.



