## IMC 2015, Blagoevgrad, Bulgaria

## Day 2, July 30, 2015

Problem 6. Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(n+1)}<2
$$

(Proposed by Ivan Krijan, University of Zagreb)
Solution. We prove that

$$
\begin{equation*}
\frac{1}{\sqrt{n}(n+1)}<\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}} . \tag{1}
\end{equation*}
$$

Multiplying by $\sqrt{n}(n+1)$, the inequality (1) is equivalent with

$$
\begin{gathered}
1<2(n+1)-2 \sqrt{n(n+1)} \\
2 \sqrt{n(n+1)}<n+(n+1)
\end{gathered}
$$

which is true by the AM-GM inequality.
Applying (1) to the terms in the left-hand side,

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(n+1)}<\sum_{n=1}^{\infty}\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2 .
$$

Problem 7. Compute

$$
\lim _{A \rightarrow+\infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x
$$

(Proposed by Jan Šustek, University of Ostrava)
Solution 1. We prove that

$$
\lim _{A \rightarrow+\infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=1
$$

For $A>1$ the integrand is greater than 1 , so

$$
\frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x>\frac{1}{A} \int_{1}^{A} 1 \mathrm{~d} x=\frac{1}{A}(A-1)=1-\frac{1}{A} .
$$

In order to find a tight upper bound, fix two real numbers, $\delta>0$ and $K>0$, and split the interval into three parts at the points $1+\delta$ and $K \log A$. Notice that for sufficiently large $A$ (i.e., for $A>A_{0}(\delta, K)$ with some $A_{0}(\delta, K)>1$ ) we have $1+\delta<K \log A<A$.) For $A>1$ the integrand is decreasing, so we can estimate it by its value at the starting points of the intervals:

$$
\begin{gathered}
\frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=\frac{1}{A}\left(\int_{1}^{1+\delta}+\int_{1+\delta}^{K \log A}+\int_{K \log A}^{A}\right)< \\
=\frac{1}{A}\left(\delta \cdot A+(K \log A-1-\delta) A^{\frac{1}{1+\delta}}+(A-K \log A) A^{\frac{1}{K \log A}}\right)< \\
<\frac{1}{A}\left(\delta A+K A^{\frac{1}{1+\delta}} \log A+A \cdot A^{\frac{1}{K \log A}}\right)=\delta+K A^{-\frac{\delta}{1+\delta}} \log A+e^{\frac{1}{K}} .
\end{gathered}
$$

Hence, for $A>A_{0}(\delta, K)$ we have

$$
1-\frac{1}{A}<\frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x<\delta+K A^{-\frac{\delta}{1+\delta}} \log A+e^{\frac{1}{K}}
$$

Taking the limit $A \rightarrow \infty$ we obtain

$$
1 \leq \liminf _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x \leq \limsup _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x \leq \delta+e^{\frac{1}{K}}
$$

Now from $\delta \rightarrow+0$ and $K \rightarrow \infty$ we get

$$
1 \leq \liminf _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x \leq \limsup _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x \leq 1,
$$

so $\liminf _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=\limsup _{A \rightarrow \infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=1$ and therefore

$$
\lim _{A \rightarrow+\infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=1
$$

Solution 2. We will employ l'Hospital's rule.
Let $f(A, x)=A^{\frac{1}{x}}, g(A, x)=\frac{1}{x} A^{\frac{1}{x}}, F(A)=\int_{1}^{A} f(A, x) \mathrm{d} x$ and $G(A)=\int_{1}^{A} g(A, x) \mathrm{d} x$. Since $\frac{\partial}{\partial A} f$ and $\frac{\partial}{\partial A} g$ are continuous, the parametric integrals $F(A)$ and $G(A)$ are differentiable with respect to $A$, and

$$
F^{\prime}(A)=f(A, A)+\int_{1}^{A} \frac{\partial}{\partial A} f(A, x) \mathrm{d} x=A^{\frac{1}{A}}+\int_{1}^{A} \frac{1}{x} A^{\frac{1}{x}-1} \mathrm{~d} x=A^{\frac{1}{A}}+\frac{1}{A} G(A),
$$

and

$$
\begin{aligned}
G^{\prime}(A) & =g(A, A)+\int_{1}^{A} \frac{\partial}{\partial A} g(A, x) \mathrm{d} x=\frac{A^{\frac{1}{A}}}{A}+\int_{1}^{A} \frac{1}{x^{2}} A^{\frac{1}{x}-1} \mathrm{~d} x= \\
& =A^{\frac{1}{A}}+\left[\frac{-1}{\log A} A^{\frac{1}{x}-1}\right]_{1}^{A}=\frac{A^{\frac{1}{A}}}{A}-\frac{A^{\frac{1}{A}}}{A \log A}+\frac{1}{\log A} .
\end{aligned}
$$

Since $\lim _{A \rightarrow \infty} A^{\frac{1}{A}}=1$, we can see that $\lim _{A \rightarrow \infty} G^{\prime}(A)=0$. Aplying l'Hospital's rule to $\lim _{A \rightarrow \infty} \frac{G(A)}{A}$ we get

$$
\lim _{A \rightarrow \infty} \frac{G(A)}{A}=\lim _{A \rightarrow \infty} \frac{G^{\prime}(A)}{1}=0
$$

so

$$
\lim _{A \rightarrow \infty} F^{\prime}(A)=\lim _{A \rightarrow \infty}\left(A^{\frac{1}{A}}+\frac{G(A)}{A}\right)=1+0=1 .
$$

Now applying l'Hospital's rule to $\lim _{A \rightarrow \infty} \frac{F(A)}{A}$ we get

$$
\lim _{A \rightarrow+\infty} \frac{1}{A} \int_{1}^{A} A^{\frac{1}{x}} \mathrm{~d} x=\lim _{A \rightarrow \infty} \frac{F(A)}{A}=\lim _{A \rightarrow \infty} \frac{F^{\prime}(A)}{1}=1 .
$$

Problem 8. Consider all $26^{26}$ words of length 26 in the Latin alphabet. Define the weight of a word as $1 /(k+1)$, where $k$ is the number of letters not used in this word. Prove that the sum of the weights of all words is $3^{75}$.
(Proposed by Fedor Petrov, St. Petersburg State University)
Solution. Let $n=26$, then $3^{75}=(n+1)^{n-1}$. We use the following well-known
Lemma. If $f(x)$ is a polynomial of degree at most $n$, then its $(n+1)$-st finite difference vanishes: $\Delta^{n+1} f(x):=\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} f(x+i) \equiv 0$.

Proof. If $\Delta$ is the operator which maps $f(x)$ to $f(x+1)-f(x)$, then $\Delta^{n+1}$ is indeed $(n+1)$-st power of $\Delta$ and the claim follows from the observation that $\Delta$ decreases the power of a polynomial.

In other words, $f(x)=\sum_{i=1}^{n+1}(-1)^{i+1}\binom{n+1}{i} f(x+i)$. Applying this for $f(x)=(n-x)^{n}$, substituting $x=-1$ and denoting $i=j+1$ we get

$$
(n+1)^{n}=\sum_{j=0}^{n}(-1)^{j}\binom{n+1}{j+1}(n-j)^{n}=(n+1) \sum_{j=0}^{n}\binom{n}{j} \cdot \frac{(-1)^{j}}{j+1} \cdot(n-j)^{n} .
$$

The $j$-th summand $\binom{n}{j} \cdot \frac{(-1)^{j}}{j+1} \cdot(n-j)^{n}$ may be interpreted as follows: choose $j$ letters, consider all $(n-j)^{n}$ words without those letters and sum up $\frac{(-1)^{j}}{j+1}$ over all those words. Now we change the order of summation, counting at first by words. For any fixed word $W$ with $k$ absent letters we get $\sum_{j=0}^{k}\binom{k}{j} \cdot \frac{(-1)^{j}}{j+1}=$ $\frac{1}{k+1} \cdot \sum_{j=0}^{k}(-1)^{j} \cdot\binom{k+1}{j+1}=\frac{1}{k+1}$, since the alternating sum of binomial coefficients $\sum_{j=-1}^{k}(-1)^{j} \cdot\binom{k+1}{j+1}$ vanishes. That is, after changing order of summation we get exactly initial sum, and it equals $(n+1)^{n-1}$.

Problem 9. An $n \times n$ complex matrix $A$ is called $t$-normal if $A A^{t}=A^{t} A$ where $A^{t}$ is the transpose of $A$. For each $n$, determine the maximum dimension of a linear space of complex $n \times n$ matrices consisting of t -normal matrices.
(Proposed by Shachar Carmeli, Weizmann Institute of Science)

## Solution.

Answer: The maximum dimension of such a space is $\frac{n(n+1)}{2}$.
The number $\frac{n(n+1)}{2}$ can be achieved, for example the symmetric matrices are obviously t-normal and they form a linear space with dimension $\frac{n(n+1)}{2}$. We shall show that this is the maximal possible dimension.

Let $M_{n}$ denote the space of $n \times n$ complex matrices, let $S_{n} \subset M_{n}$ be the subspace of all symmetric matrices and let $A_{n} \subset M_{n}$ be the subspace of all anti-symmetric matrices, i.e. matrices $A$ for which $A^{t}=-A$.

Let $V \subset M_{n}$ be a linear subspace consisting of t-normal matrices. We have to show that $\operatorname{dim}(V) \leq$ $\operatorname{dim}\left(S_{n}\right)$. Let $\pi: V \rightarrow S_{n}$ denote the linear map $\pi(A)=A+A^{t}$. We have

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{Ker}(\pi))+\operatorname{dim}(\operatorname{Im}(\pi))
$$

so we have to prove that $\operatorname{dim}(\operatorname{Ker}(\pi))+\operatorname{dim}(\operatorname{Im}(\pi)) \leq \operatorname{dim}\left(S_{n}\right)$. Notice that $\operatorname{Ker}(\pi) \subseteq A_{n}$.
We claim that for every $A \in \operatorname{Ker}(\pi)$ and $B \in V, A \pi(B)=\pi(B) A$. In other words, $\operatorname{Ker}(\pi)$ and $\operatorname{Im}(\pi)$ commute. Indeed, if $A, B \in V$ and $A=-A^{t}$ then

$$
\begin{gathered}
\quad(A+B)(A+B)^{t}=(A+B)^{t}(A+B) \Leftrightarrow \\
\Leftrightarrow A A^{t}+A B^{t}+B A^{t}+B B^{t}=A^{t} A+A^{t} B+B^{t} A+B^{t} B \Leftrightarrow \\
\Leftrightarrow A B^{t}-B A=-A B+B^{t} A \Leftrightarrow A\left(B+B^{t}\right)=\left(B+B^{t}\right) A \Leftrightarrow \\
\Leftrightarrow A \pi(B)=\pi(B) A .
\end{gathered}
$$

Our bound on the dimension on $V$ follows from the following lemma:
Lemma. Let $X \subseteq S_{n}$ and $Y \subseteq A_{n}$ be linear subspaces such that every element of $X$ commutes with every element of $Y$. Then

$$
\operatorname{dim}(X)+\operatorname{dim}(Y) \leq \operatorname{dim}\left(S_{n}\right)
$$

Proof. Without loss of generality we may assume $X=Z_{S_{n}}(Y):=\left\{x \in S_{n}: x y=y x \quad \forall y \in Y\right\}$. Define the bilinear map $B: S_{n} \times A_{n} \rightarrow \mathbb{C}$ by $B(x, y)=\operatorname{tr}(\mathrm{d}[\mathrm{x}, \mathrm{y}])$ where $[x, y]=x y-y x$ and $d=\operatorname{diag}(1, \ldots, n)$ is the matrix with diagonal elements $1, \ldots, n$ and zeros off the diagonal. Clearly $B(X, Y)=\{0\}$. Furthermore, if $y \in Y$ satisfies that $B(x, y)=0$ for all $x \in S_{n}$ then $\left.\operatorname{tr}(\mathrm{d}[\mathrm{x}, \mathrm{y}])=-\operatorname{tr}([\mathrm{d}, \mathrm{x}], \mathrm{y}]\right)=0$ for every $x \in S_{n}$.

We claim that $\left\{[d, x]: x \in S_{n}\right\}=A_{n}$. Let $E_{i}^{j}$ denote the matrix with 1 in the entry $(i, j)$ and 0 in all other entries. Then a direct computation shows that $\left[d, E_{i}^{j}\right]=(j-i) E_{i}^{j}$ and therefore $\left[d, E_{i}^{j}+E_{j}^{i}\right]=$ $(j-i)\left(E_{i}^{j}-E_{j}^{i}\right)$ and the collection $\left\{(j-i)\left(E_{i}^{j}-E_{j}^{i}\right)\right\}_{1 \leq i<j \leq n}$ span $A_{n}$ for $i \neq j$.

It follows that if $B(x, y)=0$ for all $x \in S_{n}$ then $\operatorname{tr}(\mathrm{yz})=0$ for every $z \in A_{n}$. But then, taking $z=\bar{y}$, where $\bar{y}$ is the entry-wise complex conjugate of $y$, we get $0=\operatorname{tr}(\mathrm{y} \overline{\mathrm{y}})=-\operatorname{tr}\left(\mathrm{y} \overline{\mathrm{y}}^{\mathrm{t}}\right)$ which is the sum of squares of all the entries of $y$. This means that $y=0$.

It follows that if $y_{1}, \ldots, y_{k} \in Y$ are linearly independent then the equations

$$
B\left(x, y_{1}\right)=0, \quad \ldots, \quad B\left(x, y_{k}\right)=0
$$

are linearly independent as linear equations in $x$, otherwise there are $a_{1}, \ldots, a_{k}$ such that $B\left(x, a_{1} y_{1}+\ldots+\right.$ $\left.a_{k} y_{k}\right)=0$ for every $x \in S_{n}$, a contradiction to the observation above. Since the solution of $k$ linearly independent linear equations is of codimension $k$,

$$
\begin{gathered}
\operatorname{dim}\left(\left\{x \in S_{n}:\left[x, y_{i}\right]=0, \text { for } i=1, \ldots, k\right\}\right) \leq \\
\leq \operatorname{dim}\left(x \in S_{n}: B\left(x, y_{i}\right)=0 \text { for } i=1, \ldots, k\right)=\operatorname{dim}\left(S_{n}\right)-k .
\end{gathered}
$$

The lemma follows by taking $y_{1}, \ldots, y_{k}$ to be a basis of $Y$.
Since $\operatorname{Ker}(\pi)$ and $\operatorname{Im}(\pi)$ commute, by the lemma we deduce that

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{Ker}(\pi))+\operatorname{dim}(\operatorname{Im}(\pi)) \leq \operatorname{dim}\left(S_{n}\right)=\frac{n(n+1)}{2}
$$

Problem 10. Let $n$ be a positive integer, and let $p(x)$ be a polynomial of degree $n$ with integer coefficients. Prove that

$$
\max _{0 \leq x \leq 1}|p(x)|>\frac{1}{e^{n}} .
$$

(Proposed by Géza Kós, Eötvös University, Budapest)
Solution. Let

$$
M=\max _{0 \leq x \leq 1}|p(x)| .
$$

For every positive integer $k$, let

$$
J_{k}=\int_{0}^{1}(p(x))^{2 k} \mathrm{~d} x .
$$

Obviously $0<J_{k}<M^{2 k}$ is a rational number. If $(p(x))^{2 k}=\sum_{i=0}^{2 k n} a_{k, i} x^{i}$ then $J_{k}=\sum_{i=0}^{2 k n} \frac{a_{k, i}}{i+1}$. Taking the least common denominator, we can see that $J_{k} \geq \frac{1}{\operatorname{lcm}(1,2, \ldots, 2 k n+1)}$.

An equivalent form of the prime number theorem is that $\log \operatorname{lcm}(1,2, \ldots, N) \sim N$ if $N \rightarrow \infty$. Therefore, for every $\varepsilon>0$ and sufficiently large $k$ we have

$$
\operatorname{lcm}(1,2, \ldots, 2 k n+1)<e^{(1+\varepsilon)(2 k n+1)}
$$

and therefore

$$
\begin{gathered}
M^{2 k}>J_{k} \geq \frac{1}{\operatorname{lcm}(1,2, \ldots, 2 k n+1)}>\frac{1}{e^{(1+\varepsilon)(2 k n+1)}}, \\
M>\frac{1}{e^{(1+\varepsilon)\left(n+\frac{1}{2 k}\right)}} .
\end{gathered}
$$

Taking $k \rightarrow \infty$ and then $\varepsilon \rightarrow+0$ we get

$$
M \geq \frac{1}{e^{n}} .
$$

Since $e$ is transcendent, equality is impossible.

Remark. The constant $\frac{1}{e} \approx 0.3679$ is not sharp. It is known that the best constant is between 0.4213 and 0.4232 . (See I. E. Pritsker, The Gelfond-Schnirelman method in prime number theory, Canad. J. Math. 57 (2005), 1080-1101.)

