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Problem 6. Prove that
∞∑
n=1

1√
n (n+ 1)

< 2.

(Proposed by Ivan Krijan, University of Zagreb)

Solution. We prove that
1√

n (n+ 1)
<

2√
n
− 2√

n+ 1
. (1)

Multiplying by
√
n(n+ 1), the inequality (1) is equivalent with

1 < 2(n+ 1)− 2
√
n(n+ 1)

2
√
n(n+ 1) < n+ (n+ 1)

which is true by the AM-GM inequality.
Applying (1) to the terms in the left-hand side,

∞∑
n=1

1√
n (n+ 1)

<
∞∑
n=1

(
2√
n
− 2√

n+ 1

)
= 2.

Problem 7. Compute

lim
A→+∞

1

A

∫ A

1

A
1
xdx .

(Proposed by Jan �ustek, University of Ostrava)

Solution 1. We prove that

lim
A→+∞

1

A

∫ A

1

A
1
xdx = 1 .

For A > 1 the integrand is greater than 1, so

1

A

∫ A

1

A
1
xdx >

1

A

∫ A

1

1dx =
1

A
(A− 1) = 1− 1

A
.

In order to �nd a tight upper bound, �x two real numbers, δ > 0 and K > 0, and split the interval
into three parts at the points 1 + δ and K logA. Notice that for su�ciently large A (i.e., for A > A0(δ,K)
with some A0(δ,K) > 1) we have 1 + δ < K logA < A.) For A > 1 the integrand is decreasing, so we can
estimate it by its value at the starting points of the intervals:

1

A

∫ A

1

A
1
xdx =

1

A

(∫ 1+δ

1

+

∫ K logA

1+δ

+

∫ A

K logA

)
<

=
1

A

(
δ · A+ (K logA− 1− δ)A

1
1+δ + (A−K logA)A

1
K logA

)
<

<
1

A

(
δA+KA

1
1+δ logA+ A · A

1
K logA

)
= δ +KA−

δ
1+δ logA+ e

1
K .

Hence, for A > A0(δ,K) we have

1− 1

A
<

1

A

∫ A

1

A
1
xdx < δ +KA−

δ
1+δ logA+ e

1
K .



Taking the limit A→∞ we obtain

1 ≤ lim inf
A→∞

1

A

∫ A

1

A
1
xdx ≤ lim sup

A→∞

1

A

∫ A

1

A
1
xdx ≤ δ + e

1
K .

Now from δ → +0 and K →∞ we get

1 ≤ lim inf
A→∞

1

A

∫ A

1

A
1
xdx ≤ lim sup

A→∞

1

A

∫ A

1

A
1
xdx ≤ 1,

so lim inf
A→∞

1
A

∫ A
1
A

1
xdx = lim sup

A→∞

1
A

∫ A
1
A

1
xdx = 1 and therefore

lim
A→+∞

1

A

∫ A

1

A
1
xdx = 1 .

Solution 2. We will employ l'Hospital's rule.
Let f(A, x) = A

1
x , g(A, x) = 1

x
A

1
x , F (A) =

∫ A
1
f(A, x)dx and G(A) =

∫ A
1
g(A, x)dx. Since ∂

∂A
f and

∂
∂A
g are continuous, the parametric integrals F (A) and G(A) are di�erentiable with respect to A, and

F ′(A) = f(A,A) +

∫ A

1

∂

∂A
f(A, x)dx = A

1
A +

∫ A

1

1

x
A

1
x
−1dx = A

1
A +

1

A
G(A),

and

G′(A) = g(A,A) +

∫ A

1

∂

∂A
g(A, x)dx =

A
1
A

A
+

∫ A

1

1

x2
A

1
x
−1dx =

= A
1
A +

[
−1

logA
A

1
x
−1
]A
1

=
A

1
A

A
− A

1
A

A logA
+

1

logA
.

Since limA→∞A
1
A = 1, we can see that limA→∞G

′(A) = 0. Aplying l'Hospital's rule to lim
A→∞

G(A)
A

we
get

lim
A→∞

G(A)

A
= lim

A→∞

G′(A)

1
= 0,

so

lim
A→∞

F ′(A) = lim
A→∞

(
A

1
A +

G(A)

A

)
= 1 + 0 = 1.

Now applying l'Hospital's rule to lim
A→∞

F (A)
A

we get

lim
A→+∞

1

A

∫ A

1

A
1
xdx = lim

A→∞

F (A)

A
= lim

A→∞

F ′(A)

1
= 1.

Problem 8. Consider all 2626 words of length 26 in the Latin alphabet. De�ne the weight of a word as
1/(k+ 1), where k is the number of letters not used in this word. Prove that the sum of the weights of all
words is 375.

(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. Let n = 26, then 375 = (n+ 1)n−1. We use the following well-known
Lemma. If f(x) is a polynomial of degree at most n, then its (n + 1)-st �nite di�erence vanishes:

∆n+1f(x) :=
∑n+1

i=0 (−1)i
(
n+1
i

)
f(x+ i) ≡ 0.

Proof. If ∆ is the operator which maps f(x) to f(x+ 1)− f(x), then ∆n+1 is indeed (n+ 1)-st power
of ∆ and the claim follows from the observation that ∆ decreases the power of a polynomial.

In other words, f(x) =
∑n+1

i=1 (−1)i+1
(
n+1
i

)
f(x + i). Applying this for f(x) = (n − x)n, substituting

x = −1 and denoting i = j + 1 we get

(n+ 1)n =
n∑
j=0

(−1)j
(
n+ 1

j + 1

)
(n− j)n = (n+ 1)

n∑
j=0

(
n

j

)
· (−1)j

j + 1
· (n− j)n.



The j-th summand
(
n
j

)
· (−1)j

j+1
· (n − j)n may be interpreted as follows: choose j letters, consider all

(n − j)n words without those letters and sum up (−1)j
j+1

over all those words. Now we change the order of

summation, counting at �rst by words. For any �xed wordW with k absent letters we get
∑k

j=0

(
k
j

)
· (−1)

j

j+1
=

1
k+1
·
∑k

j=0(−1)j ·
(
k+1
j+1

)
= 1

k+1
, since the alternating sum of binomial coe�cients

∑k
j=−1(−1)j ·

(
k+1
j+1

)
vanishes.

That is, after changing order of summation we get exactly initial sum, and it equals (n+ 1)n−1.

Problem 9. An n × n complex matrix A is called t-normal if AAt = AtA where At is the transpose of
A. For each n, determine the maximum dimension of a linear space of complex n× n matrices consisting
of t-normal matrices.

(Proposed by Shachar Carmeli, Weizmann Institute of Science)

Solution.

Answer : The maximum dimension of such a space is n(n+1)
2

.
The number n(n+1)

2
can be achieved, for example the symmetric matrices are obviously t-normal and

they form a linear space with dimension n(n+1)
2

. We shall show that this is the maximal possible dimension.
Let Mn denote the space of n × n complex matrices, let Sn ⊂ Mn be the subspace of all symmetric

matrices and let An ⊂ Mn be the subspace of all anti-symmetric matrices, i.e. matrices A for which
At = −A.

Let V ⊂ Mn be a linear subspace consisting of t-normal matrices. We have to show that dim(V ) ≤
dim(Sn). Let π : V → Sn denote the linear map π(A) = A+ At. We have

dim(V ) = dim(Ker (π)) + dim(Im (π))

so we have to prove that dim(Ker (π)) + dim(Im (π)) ≤ dim(Sn). Notice that Ker (π) ⊆ An.
We claim that for every A ∈ Ker (π) and B ∈ V , Aπ(B) = π(B)A. In other words, Ker (π) and Im (π)

commute. Indeed, if A,B ∈ V and A = −At then

(A+B)(A+B)t = (A+B)t(A+B)⇔
⇔ AAt + ABt +BAt +BBt = AtA+ AtB +BtA+BtB ⇔
⇔ ABt −BA = −AB +BtA⇔ A(B +Bt) = (B +Bt)A⇔

⇔ Aπ(B) = π(B)A.

Our bound on the dimension on V follows from the following lemma:
Lemma. Let X ⊆ Sn and Y ⊆ An be linear subspaces such that every element of X commutes with every
element of Y . Then

dim(X) + dim(Y ) ≤ dim(Sn)

Proof. Without loss of generality we may assume X = ZSn(Y ) := {x ∈ Sn : xy = yx ∀y ∈ Y }. De�ne the
bilinear map B : Sn ×An → C by B(x, y) = tr(d[x, y]) where [x, y] = xy − yx and d = diag(1, ..., n) is the
matrix with diagonal elements 1, ..., n and zeros o� the diagonal. Clearly B(X, Y ) = {0}. Furthermore, if
y ∈ Y satis�es that B(x, y) = 0 for all x ∈ Sn then tr(d[x, y]) = −tr([d, x], y]) = 0 for every x ∈ Sn.

We claim that {[d, x] : x ∈ Sn} = An. Let Ej
i denote the matrix with 1 in the entry (i, j) and 0 in

all other entries. Then a direct computation shows that [d,Ej
i ] = (j − i)Ej

i and therefore [d,Ej
i + Ei

j] =

(j − i)(Ej
i − Ei

j) and the collection {(j − i)(Ej
i − Ei

j)}1≤i<j≤n span An for i 6= j.
It follows that if B(x, y) = 0 for all x ∈ Sn then tr(yz) = 0 for every z ∈ An. But then, taking z = ȳ,

where ȳ is the entry-wise complex conjugate of y, we get 0 = tr(yȳ) = −tr(yȳt) which is the sum of squares
of all the entries of y. This means that y = 0.

It follows that if y1, ..., yk ∈ Y are linearly independent then the equations

B(x, y1) = 0, . . . , B(x, yk) = 0



are linearly independent as linear equations in x, otherwise there are a1, ..., ak such that B(x, a1y1 + ...+
akyk) = 0 for every x ∈ Sn, a contradiction to the observation above. Since the solution of k linearly
independent linear equations is of codimension k,

dim({x ∈ Sn : [x, yi] = 0, for i = 1, .., k}) ≤

≤ dim(x ∈ Sn : B(x, yi) = 0 for i = 1, ..., k) = dim(Sn)− k.

The lemma follows by taking y1, ..., yk to be a basis of Y .
Since Ker (π) and Im (π) commute, by the lemma we deduce that

dim(V ) = dim(Ker (π)) + dim(Im (π)) ≤ dim(Sn) =
n(n+ 1)

2
.

Problem 10. Let n be a positive integer, and let p(x) be a polynomial of degree n with integer coe�cients.
Prove that

max
0≤x≤1

∣∣p(x)
∣∣ > 1

en
.

(Proposed by Géza Kós, Eötvös University, Budapest)

Solution. Let
M = max

0≤x≤1

∣∣p(x)
∣∣.

For every positive integer k, let

Jk =

∫ 1

0

(
p(x)

)2k
dx.

Obviously 0 < Jk < M2k is a rational number. If (p(x))2k =
2kn∑
i=0

ak,ix
i then Jk =

2kn∑
i=0

ak,i
i+1

. Taking the least

common denominator, we can see that Jk ≥
1

lcm(1, 2, . . . , 2kn+ 1)
.

An equivalent form of the prime number theorem is that log lcm(1, 2, . . . , N) ∼ N ifN →∞. Therefore,
for every ε > 0 and su�ciently large k we have

lcm(1, 2, . . . , 2kn+ 1) < e(1+ε)(2kn+1)

and therefore

M2k > Jk ≥
1

lcm(1, 2, . . . , 2kn+ 1)
>

1

e(1+ε)(2kn+1)
,

M >
1

e(1+ε)(n+
1
2k

)
.

Taking k →∞ and then ε→ +0 we get

M ≥ 1

en
.

Since e is transcendent, equality is impossible.

Remark. The constant 1
e ≈ 0.3679 is not sharp. It is known that the best constant is between 0.4213 and 0.4232.

(See I. E. Pritsker, The Gelfond�Schnirelman method in prime number theory, Canad. J. Math. 57 (2005),

1080�1101.)


