IMC 2016, Blagoevgrad, Bulgaria

Day 2, July 28, 2016
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Today, Ivan the Confessor prefers continuous functions f : [0,1] — R satisfying

Problem 2.
z)+ f(y) = |z —y| for all pairs z,y € |0, 1]. Find the minimum o over all preterred functions.
for all pai 0,1]. Find the mini £/ Il preferred functi
(Proposed by Fedor Petrov, St. Petersburg State University)

Solution. The minimum of fol fis 1.
Applying the condition with 0 <z < %, Y=+ % we get

fl@)+ flz+3) >3

By integrating,
1 1/2 1/2
[ rwac= [ se s pyarz [Tt
0 0 0
On the other hand, the function f(x) = ‘x — %‘ satisfies the conditions because
3|+ 15—yl = fl@) + fw),

o =yl=|@ =)+

and establishes



Problem 3. Let n be a positive integer, and denote by Z,, the ring of integers modulo n. Suppose
that there exists a function f : Z, — Z, satisfying the following three properties:

(i) f(x) # z,
(i) f(f(x)) = =,
(i) f(f(f(z+1)+1)+1) =z for all x € Z,.

Prove that n =2 (mod 4).
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)

Solution. From property (ii) we can see that f is surjective, so f is a permutation of the elements in
Z,, and its order is at most 2. Therefore, the permutation f is the product of disjoint transpositions
of the form (m, f(x)) Property (i) yields that this permutation has no fixed point, so n is be even,
and the number of transpositions is precisely n/2.

Consider the permutation g(z) = f(x + 1). If g was odd then g o g o g also would be odd. But
property (iii) constraints that g o g o ¢ is the identity which is even. So g cannot be odd; g must
be even. The cyclic permutation h(x) = x — 1 has order n, an even number, so h is odd. Then
f(z) = gohisodd. Since f is the product of n/2 transpositions, this shows that n/2 must be odd,
son =2 (mod 4).

Remark. There exists a function with properties (i-iii) for every n =2 (mod 4). For n = 2 take f(1) = 2,
f(2) = 1. Here we outline a possible construction for n > 6.

Let n = 4k+ 2, take a regular polygon with k42 sides, and divide it into k triangles with k—1 diagonals.
Draw a circle that intersects each side and each diagonal twice; altogether we have 4k + 2 intersections. Label
the intersection points clockwise around the circle. On every side and diagonal we have two intersections;
let f send them to each other.

This function f obviously satisfies properties (i) and (ii). For every = we either have f(x + 1) = z or
the effect of adding 1 and taking f three times is going around the three sides of a triangle, so this function
satisfies property (iii).

n % o
20 ~ 3,
19 @ 5
18 6
17] X 7
16\ / 8
15 9
14 *—e 10
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Problem 4. Let k be a positive integer. For each nonnegative integer n, let f(n) be the number
of solutions (x1,...,z;) € Z* of the inequality |x;| + ... + |z] < n. Prove that for every n > 1, we
have f(n —1)f(n+1) < f(n)2

(Proposed by Esteban Arreaga, Renan Finder and José Madrid, IMPA, Rio de Janeiro)

Solution 1. We prove by induction on k. If k = 1 then we have f(n) = 2n + 1 and the statement
immediately follows from the AM-GM inequality.

Assume that £ > 2 and the statement is true for £ — 1. Let g(m) be the number of integer
solutions of |z1| + ... + |x5_1] < m; by the induction hypothesis g(m — 1)g(m + 1) < g(m)? holds;
this can be transformed to

9(1) _ g(2)

92 =93 =
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For any integer constant ¢, the inequality |21]+ ...+ |zx_1|+|c| < n has g(n—|c|) integer solutions.
Therefore, we have the recurrence relation

n

fn) =YY" g(n—lel) = g(n) +2g(n — 1) + ... + 29(0).

c=—n

It follows that
fln—=1)  g(n—1)+2g(n—2)+...+29(0)

fn) g(n) +29(n — 1) + ... +29(1) +29(0) ~
gn)+gn -1+ -1)+..+29(0)+2-0) _ f(n)
gn+1)+gn)+ (g(n) + ... + 2g(1) + 2¢(0)) f(n+1)

<

as required.
Solution 2. We first compute the generating function for f(n):

N n)qg" = N [z1[+|z2 |+ +|TE ]|+ _ |z| ' 1 _ (1+Q)k
;;f( ) > D a (Zq ) Tt

1 _
(x1,@2,...,x1)€LF =0 z€Z q

For each a = 0,1, ... denote by g,(n) (n =0,1,2,...) the coefficients in the following expansion:
(1+ q
1 _ q k+1 Z g“

So it is clear that g,+1(n) = ga(n) +g.(n—1) (n > 1), g,(0) = 1. Call a sequence of positive numbers
9(0), g(1), g(2), ...good if 9("n)1) (n = 1,2,...) is an increasing sequence. It is straightforward to

check that gq is good
(n) = kE+n go(n—1) n
Join) = k)’ gpn)  k+n

If g is a good sequence then a new sequence ¢’ defined by ¢'(0) = ¢(0), ¢'(n) = g(n) + g(n — 1)
(n > 1) is also good:

g(n—2)
gn—-1) gln-1)+gn-2) L+ ooy

gy~ gmtgn—1) 1+

where define g(—1) = 0. Thus we see that each of the sequences g1, go, ..., gr = f are good. So the
desired inequality holds.
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Problem 5. Let A be a n X n complex matrix whose eigenvalues have absolute value at most 1.
Prove that

|A™ [

H_l 2

n
(Here ||B|| = sup ||Bz|| for every n x n matrix B and ||z| = /> |#;|? for every complex vector
i=1

2l <1
reCm)
(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)

Solution 1. Let r = [|A]|. We have to prove [|A"[| < Z5r™ 1.

As is well-known, the matrix norm satisfies | XY < || X|| - ||Y|| for any matrices X,Y’, and as a
simple consequence, ||A¥|| < ||A]|* = r* for every positive integer k.

Let x(t) = (t = A)(t — Xa) ... (t = \y) ="+ 1t" ' + - -+ + ¢, be the characteristic polynomial
of A. From Vieta’s formulas we get

lck| = Z iy i | < Z \)\il...Aik|§(Z) (k=1,2,...,n)

1< <. <ipg<n 1< <. <ip<n



By the Cayley—Hamilton theorem we have x(A) = 0, so

A =l A 4t < STV AR < ST )k = (14 1) —
4 = e+l < 30 ()14 £ 32 ()t = 0 =

k=1

Combining this with the trivial estimate ||A™]| < 7™, we have
|A™|| < min (", (14 r)" — 7).

Let ro = ; it is easy to check that the two bounds are equal if r = g, moreover

_1
V2-1
1 n

0= Gnz/n S

For r < rg apply the trivial bound:

JA <7 <o r Tt < o

For r > ry we have
(I+r)"—rm

A7 < (= =t

Tn
Notice that the function f(r) = (l“ﬁ# is decreasing because the numerator has degree n — 1 and
all coefficients are positive, so

(I+r)" =1 (14r)"—rf
-1 7,6171 TO(( + /TO) ) To n2’

so [|A™| < 5

Solution 2. We will use the following facts which are easy to prove:
e For any square matrix A there exists a unitary matrix U such that UAU ! is upper-triangular.

e For any matrices A, B we have || Al < [|[(A|B)|| and ||B|| < ||(A|B)|| where (A|B) is the matrix
whose columns are the columns of A and the columns of B.

e For any matrices A, B we have [|A|| < || (4) ] and ||B|| < || (4) || where (4) is the matrix
whose rows are the rows of A and the rows of B.

e Adding a zero row or a zero column to a matrix does not change its norm.

We will prove a stronger inequality
1A™] < nfl A"

for any n x n matrix A whose eigenvalues have absolute value at most 1. We proceed by induction
on n. The case n = 1 is trivial. Without loss of generality we can assume that the matrix A is
upper-triangular. So we have

11 Qaiz2 -+ QAip
A 0 axp -+ az
0 0 - am

Note that the eigenvalues of A are precisely the diagonal entries. We split A as the sum of 3 matrices,
A=X+Y + 7 as follows:
ay 0 -+ 0 0 ap - au, 0 0O --- 0
X: 0 0 0 : Y: 0 0 0 : Z: 0 a9y * - QAon,

0 0O --- 0 0 0O --- 0 0 0 - ap,



Denote by A’ the matrix obtained from A by removing the first row and the first column:
Qg -+ d2n
A =
0 - ay
We have || X || <1 because |aj;| < 1. We also have
[A = 1Z] <Y + Z| < [|Al.
Now we decompose A™ as follows:
A" = XA (Y + 2)A"

We substitute A = X + Y + Z in the second term and expand the parentheses. Because of the
following identities:
Y?=0, YX=0, ZY=0, ZX=0

only the terms Y Z"~! and Z" survive. So we have
A" = XA (Y + 2) 72"

By the induction hypothesis we have ||[A"7 Y| < (n — 1)||A’||"72, hence ||[Z"7 Y]] < (n —1)||Z||"2 <
(n — 1)||A||""2. Therefore

IA™ [ < IXA™H + 1Y + 2)Z7 7 < A"+ (= DIY + Z| A" < nf] A"



