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We discuss the class of finite homogeneous metric spaces and some of its important subclasses
that have natural definitions in terms of metrics and well-studied analogues in the class of
Riemannian manifolds [1,3,4]. Recall that a metric space (M, d) is homogeneous if its full isometry
group acts transitively on M . One can consider finite groups supplied with some left-invariant
metrics as examples of finite homogeneous metric spaces. Let us consider some other useful
definitions. Recall that a map between metric spaces is called a submetry if it maps closed balls
of radius r around a point onto closed balls of the same radius around the image point [2].

A finite homogeneous metric space (M, d) is called normal homogeneous if there is a transitive
isometry group Γ of (M, d) and a bi-invariant metric σ on Γ such that the canonical projection
π : (Γ, σ) → (M, d) is a submetry.

A finite homogeneous metric space (M, d) is called generalized normal homogeneous if for every
points x, y ∈ M there is an isometry f (that is called a δ-translation) of the space (M, d) such
that f(x) = y and d(x, f(x)) ≥ d(z, f(z)) for all z ∈ M .

A finite homogeneous metric space (M,d) is called strongly generalized normal homogeneous
if for every points x, y ∈ M , x 6= y, there is an isometry f of the space (M,d) such that f has no
fixed point, f(x) = y, and d(x, f(x)) ≥ d(z, f(z)) for all z ∈ M .

A finite homogeneous metric space (M, d) is called Clifford–Wolf homogeneous (shortly, CW-
homogeneous) if for every points x, y ∈ M there is an isometry f (that is called a CW-translation)
of the space (M,d) such that f(x) = y and d(x, f(x)) = d(z, f(z)) for any point z ∈ M .

Let us introduce the following notations for metric spaces: FGBM, FGLM, FCWHS, FSGNHS,
FGNHS, FNHS, FHS denote respectively the classes of finite groups with bi-invariant metrics, of
finite groups with left-invariant metrics, finite CW-homogeneous spaces, finite strongly generalized
normal homogeneous spaces, finite generalized normal homogeneous spaces, finite normal homoge-
neous spaces, and finite homogeneous spaces. Our main result is the following

Theorem 1. The following inclusions and equality are fulfilled:

FGBM ⊂ FCWHS ⊂ FSGNHS ⊂ FGNHS = FNHS ⊂ FHS,

FGBM ⊂ FGLM ⊂ FHS.

Moreover, all the above inclusions are strict.
Examples of corresponding spaces are built, some of which are sets of vertices of special convex

polytopes in Euclidean spaces. In particular, we proved
Theorem 2. Let (M, d) be the set of vertices of a regular polyhedron (Platonic solid) in E3

with the induced metric. Then (M,d) ∈ FGBM for the tetrahedron and for the cube; (M, d) ∈
FCWHS and (M, d) 6∈ FGBM for the octahedron; (M,d) ∈ FHS and (M,d) 6∈ FNHS for the
dodecahedron; (M, d) ∈ FGNHS = FNHS and (M, d) 6∈ FSGNHS for the icosahedron.

We also obtained the description of multidimensional regular polytopes. At first, we recall the
following well known result.

Proposition 1 [6]. Any finite subgroup of G ⊂ S3 endowed with the metric d, induced from
the Euclidean metric on H = R4, is a Clifford–Wolf homogeneous metric space, and multiplying
by elements of G, both on the left and on the right, are CW-translations.
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Our main result for multidimensional regular polytopes is the following one.
Theorem 3. The set of vertices M of every regular polytopes of dimension n ≥ 4 with

the metric d, induced from the Euclidean metric on En, is Clifford–Wolf homogeneous, with the
exception of the 120-cell in E4, the set of vertices of which is not even normal homogeneous.

The classes for the sets of vertices of semiregular polytopes in E3 are determined too.
We also give the description of the classes of metric spaces under consideration in terms of

graph theory, with the help of which examples of finite metric spaces with unusual properties are
constructed. We consider in details one construction related to Kneser graphs, see e. g. Chapter 7
in [5].

Let us consider some k, n ∈ N, 1 ≤ k ≤ n/2. The Kneser graph KGn,k = (V,E) is a graph
whose vertices are all k-element subsets of the set Zn (or any other n-element set), and the
edges are pairs of such subsets with empty intersection, i. e. V = {A ⊂ Zn | |A| = k} and E =
{{A,B} |A,B ∈ V, A ∩B = ∅}. It is clear that |V | = Ck

n = n!
k!(n−k)! . Note that for k = 1 we

obtain the complete graph Kn, for k = n/2 the Kneser graph is a perfect matching, KG5,2 is the
Petersen graph.

Now, for a given Kneser graph KGn,k = (V, E) with k ≥ 2, we define the finite metric space
(M = V, d). Consider some positive numbers α1 6= α2 such that α1 < 2α2 < 4α1 and define the
metric d = dn,k,α1,α2 as follows: d(A,B) = α1 for A ∩ B = ∅ and d(A,B) = α2 for A ∩ B 6= ∅
(A,B ∈ V , A 6= B).

It is not difficult to prove that for k = n/2 we get Clifford–Wolf homogeneous metric spaces
(M = V, d). In what follows we suppose that 2 ≤ k < n/2, in particular, n ≥ 5.

It is well known that the authomorphism group of the graph KGn,k for k < n/2 coincides
with the group S(n) of all permutations of the set Zn, see e. g. Corollary 7.8.2 in [5].

Therefore, S(n) is the full isometry group of the metric space (M = V, d = dn,k,α1,α2): every
permutation ψ ∈ S(n) generates the isometry iψ : V → V , acting by the formula

iψ({a1, a2, . . . , ak}) = {ψ(a1), ψ(a2), . . . , ψ(ak)} .

In particular, all such spaces are homogeneous. We proved the following result.
Theorem 4. The following assertions are fulfilled.

1) The metric space (M = V, d = dn,k,α1,α2) is normal homogeneous if and only if α1 > α2.
2) The metric space (M = V, d = dn,k,α1,α2), n/2 > k ≥ 2, is not Clifford–Wolf homogeneous.
3) The metric space (M = V, d = dn,k,α1,α2), α1 > α2, is strongly generalized normal homogeneous
for (n, k) = (7, 3) and for (n, k) = (3m,m + 1), where m ≥ 3 and m 6≡ −1(mod 3).

Funally, we discuss several unsolved problems.
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