6 семестр

1.       

Название дисциплины

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

2.       

Курс обучения

 

3, специальность Компьютерная математика и системный анализ

3.       

Семестр обучения

6

4.       

Количество кредитов

3

5.       

Ф.И.О. лектора

Яблонский Олег Леонидович

6.       

Цели изучения дисциплины

создать базу знаний и навыков у студентов в области теории вероятностей

ознакомление студентов с основными принципами теории вероятностей и примерами их приложений

дальнейшее формирование у студентов навыков абстрактного математического мышления и умения применять его в конкретных задачах, повышение их математической культуры

7.       

Пререквизиты

Алгебра и теория чисел,

Дискретная математика,

Аналитическая геометрия,

Математический анализ,

Дифференциальные уравнения,

Теория функций комплексного переменного,

Функциональный анализ

8.       

Содержание дисциплины

Раздел 1. ВЕРОЯТНОСТНЫЕ ПРОСТРАНСТВА

Тема 1.1. Введение.

Тема 1.2. Терминология теории вероятностей. Предмет и задачи теории вероятностей. События, операции над событиями.

Тема 1.3. Аксиоматика Колмогорова. Свойства вероятности.

Тема 1.4. Примеры вероятностных пространств.

Раздел 2. НЕЗАВИСИМОСТЬ.

Тема 2.1. Условные вероятности. Определение условной вероятно-сти. Теоремы умножения. Формула полной вероятности и формулы Байе-са.

Тема 2.2. Независимость событий.

Тема 2.3. Независимые испытания. Схема Бернулли, полиномиаль-ная схема.

Тема 2.4. Предельные теоремы в схеме Бернулли. Локальные и инте-гральные предельные теоремы Муавра — Лапласа и Пуассона и их при-ложения.

Раздел 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ.

Тема 3.1. Случайные величины и их распределения. Тема 3.2. Классификация случайных величин. Теорема Лебега. Рас-пределения: биномиальное, геометрическое, пуассоновское, равномерное, нормальное, показательное, хи-квадрат, Стьюдента, Фишера, Коши и др. Функция и плотность распределения.

Тема 3.3. Многомерные случайные величины.

Тема 3.4. Независимость случайных величин. Критерии независимо-сти.

Тема 3.5. Функциональные преобразования случайных величин.

Раздел 4. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

Тема 4.1. Математическое ожидание и его свойства. Тема 4.2. Моменты случайных величин. Дисперсия и ее свойства. Моменты высших порядков.

Тема 4.3. Неравенства. Коэффициент корреляции..

Тема 4.4. Условные математические ожидания.

Раздел 5. ХАРАКТЕРИСТИЧЕСКИЕ ФУНКЦИИ.

Тема 5.1. Определение и простейшие свойства. Примеры характеристических функций.

Тема 5.2. Формулы обращения для характеристических функций.

Тема 5.3. Непрерывность соответствия между множествами функций распределения и характеристических функций.

Раздел 6. Предельные ТЕОРЕМЫ.

Тема 6.1. Центральная предельная теорема.

Тема 6.2. Сходимость случайных величин.  Тема 6.3. Законы больших чисел. Понятие о предельных законах, отличных от нормального (в обзорном порядке).

9.       

Рекомендуемая литература

Основная литература:

1. Боровков А. А. Теория вероятностей. М.: Наука, 1986.

2. Вентцель А.Д. Курс теории случайных процессов. – М.: Наука, 1978.

3. Гихман И. И., Скороход А. В., Ядренко М. И. Теория вероятностей и математическая статистика. Киев: Вища шк., 1979.

4. Гнеденко Б. В. Курс теории вероятностей. М.: Наука, 1988.

5. Зуеў М. М., Сячко Ул. Ул. Тэорыя iмавернасцей i матэматычная статыстыка. Мазыр: Белы вецер, 2000.

6. Ивченко Г. И., Медведев Ю. И. Математическая статистика. М.: Высш. шк., 1984.

7. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л.  Теория вероятностей : учебник. – 3-е изд., с изменен. – Минск : БГУ, 2013.

8. Розанов Ю. А. Теория вероятностей, случайные процессы, математическая статистика. М.: Наука, 1985.

9. Севастьянов Б. А. Курс теории вероятностей и математической статистики. М.: Наука, 1982.

10. Чистяков В. П. Курс теории вероятностей. М.: Наука, 1987.

11. Ширяев А. Н. Вероятность. М.: Наука, 1989.

 

Дополнительная литература:

12. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. М.: Наука, 1983.

13. Колмогоров А. Н. Основные понятия теории вероятностей. М.: Наука, 1974.

14. Крамер Г. Математические методы статистики. М.: Мир, 1976.

15. Круглов В. М. Дополнительные главы теории вероятностей. М.: Высш. шк., 1984.

16. Лазакович Н.В., Сташулёнок С.П., Яблонский О.Л.  Курс теории вероятностей : электронное учебное пособие. – Минск : Электронная книга БГУ, 2003.

17. Леман Э. Проверка статистических гипотез. М.: Наука, 1964.

18. Партасарати К. Введение в теорию вероятностей и теорию меры. М.: Мир, 1983.

19. Феллер В. Введение в теорию вероятностей и ее приложения. М.: Мир, 1984.Т.1,2.

20. Хеннекен П. А., Тортра А. Теория вероятностей и некоторые ее приложения. М.: Наука, 1974.

 Сборники задач по дисциплине  ”Теория вероятностей и математическая статистика”:

21. Жданович В.Ф., Лазакович Н.В. Радыно Н.Я. Задания к лабораторным работам по курсу теории вероятностей и математической статистики в двух частях. Ч.1. Минск, 1998.

22. Жданович В.Ф., Лазакович Н.В. Радыно Н.Я., Стушулёнок С.П. Задания к лабораторным работам по курсу теории вероятностей и математической статистики в двух частях. Ч.2. Минск, 1999.

23. Мешалкин Л.Д. Сборник задач по теории вероятностей. М: МГУ, 1963.

24. Прохоров А.В., Ушаков В.Г., Ушаков Н.Г.Задачи  по теории вероятностей: Основные понятия. Предельные теоремы. Случайные процессы. М: Наука, 1986.

25. Севастьянов Б. А., Чистяков В. П., Зубков А. М. Сборник задач по теории вероятностей. М: Наука,1989.

26. Теория вероятностей : практикум : учеб. пособие для студ вузов по мат. спец. : в 2 ч. Ч. 1 / [авт.: Н. В. Лазакович, Е. М. Радыно, С. П. Сташулёнок, С. Л. Штин, О.Л. Яблонский] ; под ред. Н. В. Лазаковича. — Минск : БГУ, 2011. – 147 с.

27. Теория вероятностей : практикум : учеб. пособие для студ вузов по мат. спец. : в 2 ч. Ч. 2 / [авт.: Н. В. Лазакович, Е. М. Радыно, С. П. Сташулёнок, А. Г. Яблонская, О.Л. Яблонский] ; под ред. Н. В. Лазаковича. — Минск : БГУ, 2014.– 175с.

29. Справочник по теории вероятностей и математической статистике.  Королюк В. С., Портенко Н. И., Скороход А.В., Турбин А. Ф.— М: Наука, 1985.

10.   

Методы преподавания

интерактивные методы обучения (работа в малых группах (команде), проблемное обучение) организуеются с учетом включенности в процесс познания всех студентов группы.  Совместная деятельность означает, что каждый студент вносит свой особый индивидуальный вклад, в ходе работы идет обмен знаниями, идеями, способами деятельности. Организуются индивидуальная, парная и групповая работа. Интерактивные методы основаны на принципах взаимодействия, активности обучаемых, опоре на групповой опыт, обязательной обратной связи

11.   

Язык обучения

Русский

12.   

Условия (требования), текущий контроль

— контрольная работа;

— коллоквиум

Оценка  на экзамене выставляется с учетом: Оценка на экзамене выставляется с учетом: 30% — работа на лабораторных и практических занятиях, 70% — устный экзамен

13.   

Форма аттестации

экзамен